Progress towards Automated ETD Cataloging

Venkat Srinivasan, Edward A. Fox
Virginia Tech, Blacksburg, VA
{svenkcat, fox}@vt.edu
Automated ETD Cataloging

Outline

- Motivation
- Background
- Earlier Results
- ETD Categorization into LCC
- ETD Tools
- ETD Tools Use Cases
- Future Work
Motivation

- ETD cataloging is time intensive and laborious
 - Familiarity with Library of Congress Classification (LCC) and/or Dewey Decimal Classification (DDC) required -- with hundreds of nodes
 - Familiarity with the subject matter of ETDs required -- often highly specialized
 - Supplementary resources like WorldCat look-up do not provide topical categories for ETDs
Motivation

- Automated cataloging tools can result in substantial time and cost savings
 - Automated classification of text into categories -- for over two decades

- Machine Learning (ML) based tools available

- But limited applicability and generalizability when applied to long documents like books, ETDs

- Users can benefit from faceted browsing and searching of collections of ETDs
Background

- Digital Libraries Research Lab (DLRL) @ Virginia Tech involved in ETD related research for over 25 yrs
 - Institutional repositories, Open Archiving, domain specific digital libraries (PhysNet), concept maps, ...

- ETD cataloging project @ DLRL started in 2008
 - Initially: extraction of keywords and phrases to generate concept maps
 - Later: moved towards ETD repository building and cataloging
Earlier Results

- STEM vs. Non-STEM ETD identification
 - (IEEE IS 2009)
 - ML based tools developed to categorize ETDs based on Dublin Core metadata
 - Accuracy of over 90% achieved on a collection of over 100K ETDs
Earlier Results

- STEM vs. Non-STEM ETD identification
- STEM productivity over time (figure from Srinivasan, Fox IEEE IS 2009)
Earlier Results

- ETD classification into DMOZ top level nodes
 - (ETD 2009 Conf.)
 - Broad categories like Business, Health, Society
 - Further tools developed for crawling/harvesting and categorization of ETDs
- Valuable lessons learned regarding categorization into topical taxonomies
- ~55K ETDs from 8 major US universities categorized:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Arts</th>
<th>Business</th>
<th>Computers</th>
<th>Health</th>
<th>Science</th>
<th>Society</th>
</tr>
</thead>
<tbody>
<tr>
<td>K ETDs</td>
<td>4</td>
<td>4</td>
<td>17</td>
<td>4</td>
<td>24</td>
<td>2</td>
</tr>
</tbody>
</table>
Earlier Results

- Faceted Browsing of ETDs (ETD 2011 Conf.)
 - Tools for extracting targeted information from within ETDs (images, chapters, TOCs, etc.)
 - Browsing interface based on all this.

Automated ETD Cataloging
ETD Categorization into LCC

- Virginia Tech Librarian mapped 18K ETDs into LCC
 - "Department Name" field of metadata was mapped into an LCC node
 - ETDs fell into a limited subset of LCC areas

- LCC taxonomy pruned
 - 70 "leaf" nodes selected (mostly levels 2 and 3)
ETD Categorization into LCC

- Machine Learning (ML) techniques for cataloging
 - “Learn” the characteristics of each node
 - e.g., representative keywords that occur often in one node but not in another
 - Successfully used in other text categorization, but not so much for book-length documents
- Our approach combines metadata information with ETD segments (table of contents, front matter, etc.) to develop faster and more accurate techniques
ETD Categorization into LCC

- Results
 - Learning and testing done in <2hrs
 - Operation is easy:
 - Point to folder containing ETDs in PDF
 - Outputs LCC category node for each ETD
 - ~70% accuracy
 - Classifying 18K ETDs into 70 nodes
ETD Tools

- Other tools
 - Extracting individual chapters, table of contents info, figures and captions, etc.
 - Varying degrees of accuracy
 - chapter identification ~75%
 - figure extraction ~40%
 - Commercial tools (vs. our open source tools) likely to result in greater accuracy
ETD Tools Use Cases

- Science ETDs in our collection, over time
Major themes in the “Education” leaf of LCC over time

<table>
<thead>
<tr>
<th>Year</th>
<th>Key themes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>community schools, moral judgment, school culture, leadership behaviors, learner centered, community college, student government, community colleges, teaching style, teaching styles</td>
</tr>
<tr>
<td>2005</td>
<td>high school, vocational education, public administration, school graduates, non vocational, degree programs, associate degree, adult education, colleges universities, junior colleges</td>
</tr>
<tr>
<td>2006</td>
<td>special education, global mindedness, administrative support, study abroad, cultural competence, education teachers, higher education, significant difference, cultural identity, abroad group</td>
</tr>
<tr>
<td>2007</td>
<td>pre release, programs days, group students, performance periods, students attended, transition process, cclc programs, release handbook, law abiding, intervention group</td>
</tr>
<tr>
<td>2008</td>
<td>domain knowledge, student achievement, grievance arbitration, teaching oriented, oriented institutions, job satisfaction, research oriented, educational leaders, capital appropriations, working conditions</td>
</tr>
<tr>
<td>2009</td>
<td>file sharing, problem solving, athletic training, training education, sexuality education, solving confidence, fourth year, research question, displaced workers, white fraternities</td>
</tr>
<tr>
<td>2010</td>
<td>spiritual quest, stem fields, community service, student athletes, diversity related, novice otas, success persistence, related experiences, state university, civic education</td>
</tr>
</tbody>
</table>
Future Work

- Categorize the entire Union Catalog ETDs into LCC
- Explore applications to personalized digital libraries
 - E.g., leverage BbookX
- Use commercial tools for segmentation and extraction
- User Interface design for browsing, searching, etc.
Future Work

- Applications and studies
 - Topical trend analysis
 - General purpose ETD analytics
 - Complementing and extending existing ETD tools (e.g., Concept Maps)
References

Comments?

Questions?